РП_Математика_5-6_2025-2026

РАБОЧАЯ ПРОГРАММА
по предмету (курсу)

______________математика______________
для __5-6__ класса (ов)

Екатеринбург
2025

I.

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

ОБЩАЯ ХАРАКТЕРИСТИКА УЧЕБНОГО ПРЕДМЕТА «МАТЕМАТИКА»
Данная рабочая программа по математике предназначена для учащихся 5 – 6 классов
МБОУ «СОШ с. Иваниха».
Рабочая программа по математике для обучающихся 5 – 6 классов является составной
частью Основной образовательной программы школы, разработана на основе:
1.
Федерального государственного образовательного стандарта основного
общего образования с учётом и современных мировых требований, предъявляемых к
математическому образованию, и традиций российского образования, которые
обеспечивают овладение ключевыми компетенциями, составляющими основу для
непрерывного образования и саморазвития, а также целостность общекультурного,
личностного и познавательного развития обучающихся.
2.
Федеральной рабочей программы ООО по учебному предмету «Математика»
базовый уровень 2025 г.
3.
Методического пособия к предметной линии учебников по математике Н. Я.
Виленкина, В. И. Жохова, А. С. Чеснокова и др.
4.
Базисного учебного плана образовательного учреждения на 2025 – 2026
уч/год.
В рабочей программе учтены идеи и положения Концепции
математического образования в Российской Федерации.
Данный предмет относится к предметам естественного цикла.
Срок реализации программы 5 лет.

развития

Рабочая программа педагога реализуется на основе:
1.
Математика : 5-й класс : базовый уровень : учебник : в 2-х частях / Н.Я.
Виленкин, В.И. Жохов, А.С. Чесноков [и др.]. – 3-е изд., перераб. – Москва :
Просвещение, 2023.
2.
Математика : 5-й класс : базовый уровень : учебник : в 2-х частях / Н.Я.
Виленкин, В.И. Жохов, А.С. Чесноков [и др.]. – 3-е изд., перераб. – Москва :
Просвещение, 2023.
3.
Математика : 5—6-е классы : базовый уровень : методическое пособие к
предметной линии учебников по математике Н. Я. Виленкина, В. И. Жохова, А. С.
Чеснокова и др. — 2-е изд., стер. — Москва : Просвещение, 2023. — 64 с.
4.
Математика : 5-й класс : базовый уровень : контрольные работы : учебное
пособие / Л.Б. Крайнева. – Москва : Просвещение, 2023. – 80 с. : ил.
5.
Математика : 6-й класс : базовый уровень : контрольные работы : учебное
пособие / Л.Б. Крайнева. – Москва : Просвещение, 2023. – 80 с. : ил.
Назначение программы.
Предметная программа по математике обеспечивает поэтапное достижение
планируемых результатов освоения Основной образовательной программы школы. Она
определяет цели, содержание курса, планируемые результаты по математике для каждого
года обучения.
Математическое образование является обязательной и неотъемлемой частью общего
образования на всех ступенях школы. Обучение математике в основной школе направлено
на
достижение
следующих
целей:
ЦЕЛИ ИЗУЧЕНИЯ УЧЕБНОГО КУРСА
2

«МАТЕМАТИКА»
Приоритетными целями обучения математике в 5—6 классах являются:
·
продолжение формирования основных математических понятий (число, величина,
геометрическая фигура), обеспечивающих преемственность и перспективность
математического образования обучающихся;
·
развитие интеллектуальных и творческих способностей обучающихся,
познавательной активности, исследовательских умений, интереса к изучению математики;
·
подведение обучающихся на доступном для них уровне к осознанию взаимосвязи
математики и окружающего мира;
·
формирование функциональной математической грамотности: умения распознавать
математические объекты в реальных жизненных ситуациях, применять освоенные умения
для решения практико-ориентированных задач, интерпретировать полученные результаты
и оценивать их на соответствие практической ситуации.
ОСНОВНЫЕ ЛИНИИ КУРСА
Основные линии содержания курса математики в 5—6 классах — арифметическая и
геометрическая, которые развиваются параллельно, каждая в соответствии с собственной
логикой, однако, не независимо одна от другой, а в тесном контакте и взаимодействии.
Также в курсе происходит знакомство с элементами алгебры и описательной статистики.
Изучение арифметического материала начинается со систематизации и развития
знаний о натуральных числах, полученных в начальной школе. При этом
совершенствование вычислительной техники и формирование новых теоретических знаний
сочетается с развитием вычислительной культуры, в частности с обучением простейшим
приёмам прикидки и оценки результатов вычислений. Изучение натуральных чисел
продолжается в 6 классе знакомством с начальными понятиями теории делимости.
Другой крупный блок в содержании арифметической линии — это дроби. Начало
изучения обыкновенных и десятичных дробей отнесено к 5 классу. Это первый этап в
освоении дробей, когда происходит знакомство с основными идеями, понятиями темы. При
этом рассмотрение обыкновенных дробей в полном объёме предшествует изучению
десятичных дробей, что целесообразно с точки зрения логики изложения числовой линии,
когда правила действий с десятичными дробями можно обосновать уже известными
алгоритмами выполнения действий с обыкновенными дробями. Знакомство с десятичными
дробями расширит возможности для понимания обучающимися при кладного применения
новой записи при изучении других предметов и при практическом использовании.
К 6 классу отнесён второй этап в изучении дробей, где происходит
совершенствование навыков сравнения и преобразования дробей, освоение новых
вычислительных алгоритмов, оттачивание техники вычислений, в том числе значений
выражений, содержащих и обыкновенные, и десятичные дроби, установление связей между
ними, рассмотрение приёмов решения задач на дроби. В начале 6 класса происходит
знакомство с понятием процента.
Особенностью изучения положительных и отрицательных чисел является то, что они
также могут рассматриваться в несколько этапов. В 6 классе в начале изучения темы
«Положительные и отрицательные числа» выделяется подтема «Целые числа», в рамках
которой знакомство с отрицательными чис лами и действиями с положительными и
отрицательными числами происходит на основе содержательного подхода. Это позволяет
на доступном уровне познакомить учащихся практически со всеми основными понятиями
темы, в том числе и с правилами знаков при выполнении арифметических действий.
Изучение рациональных чисел на этом не закончится, а будет продолжено в курсе алгебры
7 класса, что станет следующим проходом всех принципиальных вопросов, тем самым
разделение трудностей облегчает восприятие материала, а распределение во времени
способствует прочности приобретаемых навыков.
3

При обучении решению текстовых задач в 5—6 классах используются
арифметические приёмы решения. Текстовые задачи, решаемые при отработке
вычислительных навыков в 5—6 классах, рассматриваются задачи следующих видов:
задачи на движение, на части, на покупки, на работу и производительность, на проценты,
на отношения и пропорции. Кроме того, обучающиеся знакомятся с приёмами решения
задач перебором возможных вариантов, учатся работать с информацией, представленной в
форме таблиц или диаграмм.
В рабочей программе предусмотрено формирование пропедевтических
алгебраических представлений. Буква как символ некоторого числа в зависимости от
математического контекста вводится постепенно. Буквенная символика широко
используется прежде всего для записи общих утверждений и предложений, формул, в
частности для вычисления геометрических величин, в качестве «заместителя» числа.
В курсе «Математики» 5—6 классов представлена наглядная геометрия, направленная
на развитие образного мышления, пространственного воображения, изобразительных
умений. Это важный этап в изучении геометрии, который осуществляется на нагляднопрактическом уровне, опирается на наглядно-образное мышление обучающихся. Большая
роль отводится практической деятельности, опыту, эксперименту, моделированию.
Обучающиеся знакомятся с геометрическими фигурами на плоскости и в пространстве, с
их простейшими конфигурациями, учатся изображать их на нелинованной и клетчатой
бумаге, рассматривают их простейшие свойства. В процессе изучения наглядной геометрии
знания, полученные обучающимися в начальной школе, систематизируются и
расширяются.
МЕСТО УЧЕБНОГО КУРСА В УЧЕБНОМ ПЛАНЕ
Согласно учебному плану в 5—6 классах изучается интегрированный предмет
«Математика», который включает арифметический материал и наглядную геометрию, а
также пропедевтические сведения из алгебры, элементы логики и начала описательной
статистики.
Учебный план на изучение математики в 5—6 классах отводит не менее 5 учебных
часов в неделю в течение каждого года обучения, всего не менее 340 учебных часов.
II.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА
«МАТЕМАТИКА»
НА УРОВНЕ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ

Освоение учебного предмета «Математика» должно обеспечивать достижение на
уровне основного общего образования следующих личностных, метапредметных и
предметных образовательных результатов:
ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ
Личностные результаты освоения программы учебного предмета «Математика»
характеризуются:
Патриотическое воспитание:
проявлением интереса к прошлому и настоящему российской математики,
ценностным отношением к достижениям российских математиков и российской
математической школы, к использованию этих достижений в других науках и прикладных
сферах.
Гражданское и духовно-нравственное воспитание:
готовностью к выполнению обязанностей гражданина и реализации его прав,
представлением о математических основах функционирования различных структур,
явлений, процедур гражданского общества (выборы, опросы и пр.); готовностью к
4

обсуждению этических проблем, связанных с практическим применением достижений
науки, осознанием важности морально-этических принципов в деятельности учёного.
Трудовое воспитание:
установкой на активное участие в решении практических задач математической
направленности, осознанием важности математического образования на протяжении всей
жизни для успешной профессиональной деятельности и развитием необходимых умений;
осознанным выбором и построением индивидуальной траектории образования и
жизненных планов с учётом личных интересов и общественных потребностей.
Эстетическое воспитание:
способностью к эмоциональному и эстетическому восприятию математических
объектов, задач, решений, рассуждений; умению видеть математические закономерности
в искусстве.
Ценности научного познания:
ориентацией в деятельности на современную систему научных представлений об
основных закономерностях развития человека, природы и общества, пониманием
математической науки как сферы человеческой деятельности, этапов её развития и
значимости для развития цивилизации; овладением языком математики и математической
культурой как средством познания мира; овладением простейшими навыками
исследовательской деятельности.
Физическое воспитание, формирование культуры здоровья и эмоционального благополучия:
готовностью применять математические знания в интересах своего здоровья, ведения
здорового образа жизни (здоровое питание, сбалансированный режим занятий и отдыха,
регулярная физическая активность); сформированностью навыка рефлексии, признанием
своего права на ошибку и такого же права другого человека.
Экологическое воспитание:
ориентацией на применение математических знаний для решения задач в области
сохранности окружающей среды, планирования поступков и оценки их возможных
последствий для окружающей среды; осознанием глобального характера экологических
проблем и путей их решения.
Личностные результаты, обеспечивающие адаптацию обучающегося к изменяющимся условиям социальной и природной среды:
готовностью к действиям в условиях неопределённости, повышению уровня своей
компетентности через практическую деятельность, в том числе умение учиться у других
людей, приобретать в совместной деятельности новые знания, навыки и компетенции из
опыта других;
необходимостью в формировании новых знаний, в том числе формулировать идеи,
понятия, гипотезы об объектах и явлениях, в том числе ранее не известных, осознавать
дефициты собственных знаний и компетентностей, планировать своё развитие;
способностью осознавать стрессовую ситуацию, воспринимать стрессовую ситуацию
как вызов, требующий контрмер, корректировать принимаемые решения и действия,
формулировать и оценивать риски и последствия, формировать опыт.
МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ
Метапредметные результаты освоения программы учебного предмета «Математика»
характеризуются
овладением
универсальными
познавательными
действиями,
универсальными коммуникативными действиями и универсальными регулятивными
действиями.
1) Универсальные познавательные действия обеспечивают формирование базовых
когнитивных процессов обучающихся (освоение методов познания окружающего мира;
применение логических, исследовательских операций, умений работать с информацией).
5

Базовые логические действия:
·
выявлять и характеризовать существенные признаки математических объектов,
понятий, отношений между понятиями; формулировать определения понятий;
устанавливать существенный признак классификации, основания для обобщения и
сравнения, критерии проводимого анализа;
·
воспринимать, формулировать и преобразовывать суждения: утвердительные и
отрицательные, единичные, частные и общие; условные;
·
выявлять математические закономерности, взаимосвязи и противоречия в фактах,
данных, наблюдениях и утверждениях; предлагать критерии для выявления
закономерностей и противоречий;
·
делать выводы с использованием законов логики, дедуктивных и индуктивных
умозаключений, умозаключений по аналогии;
·
разбирать доказательства математических утверждений (прямые и от противного),
проводить самостоятельно несложные доказательства математических фактов, выстраивать
аргументацию, приводить примеры и контрпримеры; обосновывать собственные
рассуждения;
·
выбирать способ решения учебной задачи (сравнивать несколько вариантов
решения, выбирать наиболее подходящий с учётом самостоятельно выделенных
критериев).
Базовые исследовательские действия:
·
использовать вопросы как исследовательский инструмент познания; формулировать
вопросы, фиксирующие противоречие, проблему, самостоятельно устанавливать искомое
и данное, формировать гипотезу, аргументировать свою позицию, мнение;
·
проводить по самостоятельно составленному плану несложный эксперимент,
небольшое исследование по установлению особенностей математического объекта,
зависимостей объектов между собой;
·
самостоятельно формулировать обобщения и выводы по результатам проведённого
наблюдения, исследования, оценивать достоверность полученных результатов, выводов и
обобщений;
·
прогнозировать возможное развитие процесса, а также выдвигать предположения о
его развитии в новых условиях.
Работа с информацией:
·
выявлять недостаточность и избыточность информации, данных, необходимых для
решения задачи;
·
выбирать, анализировать, систематизировать и интерпретировать информацию
различных видов и форм представления;
·
выбирать форму представления информации и иллюстрировать решаемые задачи
схемами, диаграммами, иной графикой и их комбинациями;
·
оценивать надёжность информации по критериям, предложенным учителем или
сформулированным самостоятельно.
2) Универсальные коммуникативные действия обеспечивают сформированность
социальных навыков обучающихся.
Общение:
·
воспринимать и формулировать суждения в соответствии с условиями и целями
общения; ясно, точно, грамотно выражать свою точку зрения в устных и письменных
текстах, давать пояснения по ходу решения задачи, комментировать полученный результат;
6

·
в ходе обсуждения задавать вопросы по существу обсуждаемой темы, проблемы,
решаемой задачи, высказывать идеи, нацеленные на поиск решения; сопоставлять свои
суждения с суждениями других участников диалога, обнаруживать различие и сходство
позиций; в корректной форме формулировать разногласия, свои возражения;
·
представлять результаты решения задачи, эксперимента, исследования, проекта;
самостоятельно выбирать формат выступления с учётом задач презентации и особенностей
аудитории.
Сотрудничество:
·
понимать и использовать преимущества командной и индивидуальной работы при
решении учебных математическихзадач; принимать цель совместной деятельности,
планировать организацию совместной работы, распределять виды работ, договариваться,
обсуждать процесс и результат работы; обобщать мнения нескольких людей;
·
участвовать в групповых формах работы (обсуждения, обмен мнениями, мозговые
штурмы и др.); выполнять свою часть работы и координировать свои действия с другими
членами команды; оценивать качество своего вклада в общий продукт по критериям,
сформулированным участниками взаимодействия.
3) Универсальные регулятивные действия обеспечивают формирование смысловых
установок и жизненных навыков личности.
Самоорганизация:
·
самостоятельно составлять план, алгоритм решения задачи (или его часть), выбирать
способ решения с учётом имеющихся ресурсов и собственных возможностей,
аргументировать и корректировать варианты решений с учётом новой информации.
Самоконтроль:
·
владеть способами самопроверки, самоконтроля процесса и результата решения
математической задачи;
·
предвидеть трудности, которые могут возникнуть при решении задачи, вносить
коррективы в деятельность на основе новых обстоятельств, найденных ошибок,
выявленных трудностей;
·
оценивать соответствие результата деятельности поставленной цели и условиям,
объяснять причины достижения или недостижения цели, находить ошибку, давать оценку
приобретённому опыту.
СОДЕРЖАНИЕ УЧЕБНОГО КУРСА (ПО ГОДАМ ОБУЧЕНИЯ)
5 класс
Натуральные числа и нуль
Натуральное число. Ряд натуральных чисел. Число 0. Изображение натуральных
чисел точками на координатной (числовой) прямой.
Позиционная система счисления. Римская нумерация как пример непозиционной
системы счисления. Десятичная система счисления.
Сравнение натуральных чисел, сравнение натуральных чисел с нулём. Способы
сравнения. Округление натуральных чисел.
Сложение натуральных чисел; свойство нуля при сложении. Вычитание как действие,
обратное сложению. Умножение натуральных чисел; свойства нуля и единицы при
умножении. Деление как действие, обратное умножению. Компоненты действий, связь
между ними. Проверка результата арифметического действия. Переместительное и
сочетательное свойства (законы) сложения и умножения, распределительное свойство
(закон) умножения.
7

Использование букв для обозначения неизвестного компонента и записи свойств
арифметических действий.
Делители и кратные числа, разложение на множители. Простые и составные числа.
Признаки делимости на 2, 5, 10, 3, 9. Деление с остатком.
Степень с натуральным показателем. Запись числа в виде суммы разрядных
слагаемых.
Числовое выражение. Вычисление значений числовых выражений; порядок
выполнения действий. Использование при вычислениях переместительного и
сочетательного свойств (законов) сложения и умножения, распределительного свойства
умножения.
Дроби
Представление о дроби как способе записи части величины. Обыкновенные дроби.
Правильные и неправильные дроби. Смешанная дробь; представление смешанной дроби в
виде неправильной дроби и выделение целой части числа из неправильной дроби.
Изображение дробей точками на числовой прямой. Основное свойство дроби. Сокращение
дробей. Приведение дроби к новому знаменателю. Сравнение дробей.
Сложение и вычитание дробей. Умножение и деление дробей; взаимно-обратные
дроби. Нахождение части целого и целого по его части.
Десятичная запись дробей. Представление десятичной дроби в виде обыкновенной.
Изображение десятичных дробей точками на числовой прямой. Сравнение десятичных
дробей.
Арифметические действия с десятичными дробями. Округление десятичных дробей.
Решение текстовых задач
Решение текстовых задач арифметическим способом. Решение логических задач.
Решение задач перебором всех возможных вариантов. Использование при решении задач
таблиц и схем.
Решение задач, содержащих зависимости, связывающие величины: скорость, время,
расстояние; цена, количество, стоимость. Единицы измерения: массы, объёма, цены;
расстояния, времени, скорости. Связь между единицами измерения каждой величины.
Решение основных задач на дроби.
Представление данных в виде таблиц, столбчатых диаграмм.
Наглядная геометрия
Наглядные представления о фигурах на плоскости: точка, прямая, отрезок, луч, угол,
ломаная, многоугольник, окружность, круг. Угол. Прямой, острый, тупой и развёрнутый
углы.
Длина отрезка, метрические единицы длины. Длина ломаной, периметр
многоугольника. Измерение и построение углов с помощью транспортира.
Наглядные представления о фигурах на плоскости: многоугольник; прямоугольник,
квадрат; треугольник, о равенстве фигур.
Изображение фигур, в том числе на клетчатой бумаге. Построение конфигураций из
частей прямой, окружности на нелинованной и клетчатой бумаге. Использование свойств
сторон и углов прямоугольника, квадрата.
Площадь прямоугольника и многоугольников, составленных из прямоугольников, в
том числе фигур, изображённых на клетчатой бумаге. Единицы измерения площади.
Наглядные представления о пространственных фигурах: прямоугольный
параллелепипед, куб, многогранники. Изображение простейших многогранников.
Развёртки куба и параллелепипеда. Создание моделей многогранников (из бумаги,
проволоки, пластилина и др.).
Объём прямоугольного параллелепипеда, куба. Единицы измерения объёма.
8

6 класс
Натуральные числа
Арифметические действия с многозначными натуральными числами. Числовые
выражения, порядок действий, использование скобок. Использование при вычислениях
переместительного и сочетательного свойств сложения и умножения, распределительного
свойства умножения. Округление натуральных чисел.
Делители и кратные числа; наибольший общий делитель и наименьшее общее
кратное. Делимость суммы и произведения. Деление с остатком.
Дроби
Обыкновенная дробь, основное свойство дроби, сокращение дробей. Сравнение и
упорядочивание дробей. Решение задач на нахождение части от целого и целого по его
части. Дробное число как результат деления. Представление десятичной дроби в виде
обыкновенной дроби и возможность представления обыкновенной дроби в виде
десятичной. Десятичные дроби и метрическая система мер. Арифметические действия и
числовые выражения с обыкновенными и десятичными дробями.
Отношение. Деление в данном отношении. Масштаб, пропорция. Применение
пропорций при решении задач.
Понятие процента. Вычисление процента от величины и величины по её проценту.
Выражение процентов десятичными дробями. Решение задач на проценты. Выражение
отношения величин в процентах. Положительные и отрицательные числа
Положительные и отрицательные числа.
Целые числа. Модуль числа, геометрическая интерпретация модуля числа.
Изображение чисел на координатной прямой. Числовые промежутки.
Сравнение чисел. Арифметические действия с положительными и отрицательными
числами.
Прямоугольная система координат на плоскости. Координаты точки на плоскости,
абсцисса и ордината. Построение точек и фигур на координатной плоскости.
Буквенные выражения
Применение букв для записи математических выражений и предложений. Свойства
арифметических действий. Буквенные выражения и числовые подстановки. Буквенные
равенства, нахождение неизвестного компонента. Формулы; формулы периметра и
площади прямоугольника, квадрата, объёма параллелепипеда и куба.
Решение текстовых задач
Решение текстовых задач арифметическим способом. Решение логических задач.
Решение задач перебором всех возможных вариантов.
Решение задач, содержащих зависимости, связывающих величины: скорость, время,
расстояние; цена, количество, стоимость; производительность, время, объём работы.
Единицы измерения: массы, стоимости; расстояния, времени, скорости. Связь между
единицами измерения каждой величины.
Решение задач, связанных с отношением, пропорциональностью величин,
процентами; решение основных задач на дроби и проценты.
Оценка и прикидка, округление результата.
Составление буквенных выражений по условию задачи.
Представление данных с помощью таблиц и диаграмм. Столбчатые диаграммы:
чтение и построение. Чтение круговых диаграмм.
Наглядная геометрия
Наглядные представления о фигурах на плоскости: точка, прямая, отрезок, луч, угол,
ломаная, многоугольник, четырёхугольник, треугольник, окружность, круг.
9

Взаимное расположение двух прямых на плоскости, параллельные прямые,
перпендикулярные прямые. Измерение расстояний: между двумя точками, от точки до
прямой; длина маршрута на квадратной сетке.
Измерение и построение углов с помощью транспортира. Виды треугольников:
остроугольный, прямоугольный, тупоугольный; равнобедренный, равносторонний.
Четырёхугольник, примеры четырёхугольников. Прямоугольник, квадрат: использование
свойств сторон, углов, диагоналей. Изображение геометрических фигур на нелинованной
бумаге с использованием циркуля, линейки, угольника, транспортира. Построения на
клетчатой бумаге.
Периметр многоугольника. Понятие площади фигуры; единицы измерения площади.
Приближённое измерение площади фигур, в том числе на квадратной сетке. Приближённое
измерение длины окружности, площади круга.
Симметрия: центральная, осевая и зеркальная симметрии. Построение симметричных
фигур.
Наглядные представления о пространственных фигурах: параллелепипед, куб,
призма, пирамида, конус, цилиндр, шар и сфера. Изображение пространственных фигур.
Примеры развёрток многогранников, цилиндра и конуса. Создание моделей
пространственных фигур (из бумаги, проволоки, пластилина и др.).
Понятие объёма; единицы измерения объёма. Объём прямоугольного
параллелепипеда, куба.
ПЛАНИРУЕМЫЕ ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ПРИМЕРНОЙ
РАБОЧЕЙ ПРОГРАММЫ КУРСА (ПО ГОДАМ ОБУЧЕНИЯ)
Развитие логических представлений и навыков логического мышления
осуществляется на протяжении всех лет обучения в основной школе в рамках всех
названных курсов. Предполагается, что выпускник основной школы сможет строить
высказывания и отрицания высказываний, распознавать истинные и ложные высказывания,
приводить примеры и контрпримеры, овладеет понятиями: определение, аксиома, теорема,
доказательство — и научится использовать их при выполнении учебных и внеучебных
задач.
Освоение учебного курса «Математика» в 5—6 классах основной школы должно
обеспечивать достижение следующих предметных образовательных результатов:
5 класс
Числа и вычисления
·
Понимать и правильно употреблять термины, связанные с натуральными числами,
обыкновенными и десятичными дробями.
·
Сравнивать и упорядочивать натуральные числа, сравнивать в простейших случаях
обыкновенные дроби, десятичные дроби.
·
Соотносить точку на координатной (числовой) прямой с соответствующим ей
числом и изображать натуральные числа точками на координатной (числовой) прямой.
·
Выполнять арифметические действия с натуральными числами, с обыкновенными
дробями в простейших случаях.
·
Выполнять проверку, прикидку результата вычислений.
·
Округлять натуральные числа.
Решение текстовых задач
·
Решать текстовые задачи арифметическим способом и с помощью организованного
конечного перебора всех возможных вариантов.

10

·
Решать задачи, содержащие зависимости, связывающие величины: скорость, время,
расстояние; цена, количество, стоимость.
·
Использовать краткие записи, схемы, таблицы, обозначения при решении задач.
·
Пользоваться основными единицами измерения: цены, массы; расстояния, времени,
скорости; выражать одни единицы величины через другие.
·
Извлекать, анализировать, оценивать информацию, представленную в таблице, на
столбчатой диаграмме, интерпретировать представленные данные, использовать данные
при решении задач.
Наглядная геометрия
·
Пользоваться геометрическими понятиями: точка, прямая, отрезок, луч, угол,
многоугольник, окружность, круг.
·
Приводить примеры объектов окружающего мира, имеющих форму изученных
геометрических фигур.
·
Использовать терминологию, связанную с углами: вершина сторона; с
многоугольниками: угол, вершина, сторона, диагональ; с окружностью: радиус, диаметр,
центр.
·
Изображать изученные геометрические фигуры на нелинованной и клетчатой бумаге
с помощью циркуля и линейки.
·
Находить длины отрезков непосредственным измерением с помощью линейки,
строить отрезки заданной длины; строить окружность заданного радиуса.
·
Использовать свойства сторон и углов прямоугольника, квадрата для их построения,
вычисления площади и периметра.
·
Вычислять периметр и площадь квадрата, прямоугольника, фигур, составленных из
прямоугольников, в том числе фигур, изображённых на клетчатой бумаге.
·
Пользоваться основными метрическими единицами измерения длины, площади;
выражать одни единицы величины через другие.
·
Распознавать параллелепипед, куб, использовать терминологию: вершина, ребро
грань, измерения; находить измерения параллелепипеда, куба.
·
Вычислять объём куба, параллелепипеда по заданным измерениям, пользоваться
единицами измерения объёма.
·
Решать несложные задачи на измерение геометрических величин в практических
ситуациях.
6 класс
Числа и вычисления
·
Знать и понимать термины, связанные с различными видами чисел и способами их
записи, переходить (если это возможно) от одной формы записи числа к другой.
·
Сравнивать и упорядочивать целые числа, обыкновенные и десятичные дроби,
сравнивать числа одного и разных знаков.
·
Выполнять, сочетая устные и письменные приёмы, арифметические действия с
натуральными и целыми числами, обыкновенными и десятичными дробями,
положительными и отрицательными числами.
·
Вычислять значения числовых выражений, выполнять прикидку и оценку результата
вычислений; выполнять преобразования числовых выражений на основе свойств
арифметических действий.
·
Соотносить точку на координатной прямой с соответствующим ей числом и
изображать числа точками на координатной прямой, находить модуль числа.
·
Соотносить точки в прямоугольной системе координат с координатами этой точки.
·
Округлять целые числа и десятичные дроби, находить приближения чисел.
Числовые и буквенные выражения
11

·
Понимать и употреблять термины, связанные с записью степени числа, находить
квадрат и куб числа, вычислять значения числовых выражений, содержащих степени.
·
Пользоваться признаками делимости, раскладывать натуральные числа на простые
множители.
·
Пользоваться масштабом, составлять пропорции и отношения.
·
Использовать буквы для обозначения чисел при записи математических выражений,
составлять буквенные выражения и формулы, находить значения буквенных выражений,
осуществляя необходимые подстановки и преобразования.
·
Находить неизвестный компонент равенства.
Решение текстовых задач
·
Решать многошаговые текстовые задачи арифметическим способом.
·
Решать задачи, связанные с отношением, пропорциональностью величин,
процентами; решать три основные задачи на дроби и проценты.
·
Решать задачи, содержащие зависимости, связывающие величины: скорость, время,
расстояние, цена, количество, стоимость; производительность, время, объёма работы,
используя арифметические действия, оценку, прикидку; пользоваться единицами
измерения соответствующих величин.
·
Составлять буквенные выражения по условию задачи.
·
Извлекать информацию, представленную в таблицах, на линейной, столбчатой или
круговой диаграммах, интерпретировать представленные данные; использовать данные
при решении задач.
·
Представлять информацию с помощью таблиц, линейной и столбчатой диаграмм.
Наглядная геометрия
·
Приводить примеры объектов окружающего мира, имеющих форму изученных
геометрических плоских и пространственных фигур, примеры равных и симметричных
фигур.
·
Изображать с помощью циркуля, линейки, транспортира на нелинованной и
клетчатой бумаге изученные плоские геометрические фигуры и конфигурации,
симметричные фигуры.
·
Пользоваться геометрическими понятиями: равенство фигур, симметрия;
использовать терминологию, связанную с симметрией: ось симметрии, центр симметрии.
·
Находить величины углов измерением с помощью транспортира, строить углы
заданной величины, пользоваться при решении задач градусной мерой углов; распознавать
на чертежах острый, прямой, развёрнутый и тупой углы.
·
Вычислять длину ломаной, периметр многоугольника, пользоваться единицами
измерения длины, выражать одни единицы измерения длины через другие.
·
Находить, используя чертёжные инструменты, расстояния: между двумя точками,
от точки до прямой, длину пути на квадратной сетке.
·
Вычислять площадь фигур, составленных из прямоугольников, использовать
разбиение на прямоугольники, на равные фигуры, достраивание до прямоугольника;
пользоваться основными единицами измерения площади; выражать одни единицы
измерения площади через другие.
·
Распознавать на моделях и изображениях пирамиду, конус, цилиндр, использовать
терминологию: вершина, ребро, грань, основание, развёртка.
·
Изображать на клетчатой бумаге прямоугольный параллелепипед.
·
Вычислять объём прямоугольного параллелепипеда, куба, пользоваться основными
единицами измерения объёма; выражать одни единицы измерения объёма через другие.
·
Решать несложные задачи на нахождение геометрических величин в практических
ситуациях.
12

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ УЧЕБНОГО КУРСА
(ПО ГОДАМ ОБУЧЕНИЯ)
5 класс (175 ч)
Название
раздела
Основное
Основные виды деятельности обучающихся
курса (кол
содержание
часов)
Натураль- Десятичная
Читать, записывать, сравнивать натуральные числа;
ные
система
предлагать и обсуждать способы упорядочивания чисел.
числа.
счисления. Ряд
Изображать координатную прямую, отмечать числа
Действия с натуральных
точками на координатной прямой, находить координаты
натураль- чисел.
точки.
ными
Натуральный ряд. Исследовать свойства натурального ряда, чисел 0 и 1 при
числами Число 0.
сложении и умножении.
(43 ч)
Натуральные
Использовать правило округле-ния натуральных чисел.
числа на
Выполнять арифметические действия с натуральными
координатной
числами, вычислять значения числовых выражений со
прямой.
скобками и без скобок.
Сравнение,
Записывать произведение в виде степени, читать степени,
округление
использовать терминологию (основание, показатель),
натуральных
вычислять значения степеней.
чисел.
Выполнять прикидку и оценку значений числовых
Арифметическивыражений, предлагать и применять приёмы проверки
е действия с
вычислений.
натуральными
Использовать при вычислениях переместительное и
числами. Свойства сочетательное свойства сложения и умножения,
нуля при сложениираспределительное свойство умножения; формулировать и
и умножении,
применять правила преобразования числовых выражений
свойства единицы на основе свойств арифметических действий.
при умножении. Исследовать числовые закономерности, выдвигать и
Переместительное обосновывать гипотезы, формулировать обобщения и
и сочетательное выводы по результатам проведённого исследования.
свойства сложения Формулировать определения делителя и кратного,
и умножения,
называть делители и кратные числа; распознавать
распределительное простые и составные числа; формулировать и применять
свойство
признаки делимости на 2, 3, 5, 9, 10; применять алгоритм
умножения.
разложения числа на простые множители; находить
Делители и
остатки от деления и неполное частное.
кратные числа,
Распознавать истинные и ложные высказывания о
разложение числа натуральных числах, приводить примеры и
на множители.
контрпримеры, строить высказывания и отрицания выДеление с
сказываний о свойствах натуральных чисел.
остатком. Простые Конструировать математические предложения с
и составные числа. помощью связок «и», «или», «если…, то…».
Признаки
Решать текстовые задачи арифметическим способом,
делимости на 2, 5, использовать зависимости между величинами (скорость,
10, 3, 9.
время, расстояние; цена, количество, стоимость
Степень с
и др.): анализировать и осмысливать текст задачи,
натуральным
переформулировать условие, извлекать необходимые
показателем.
данные, устанавливать зависимости между величинами,
Числовые
строить логическую цепочку рассуждений.
13

Наглядная
геометрия.
Линии
на
плоскости
(12 ч)

Обыкнове
нные
дроби
(48 ч)

выражения;
Моделировать ход решения задачи с помощью рисунка,
порядок действий. схемы, таблицы.
Решение
Приводить, разбирать, оценивать различные решения,
текстовых задач на записи решений текстовых задач.
все
Критически оценивать полученный результат,
арифметические осуществлять самоконтроль, проверяя ответ на
действия, на
соответствие условию, находить ошибки.
движение и
Решать задачи с помощью перебора всех возможных
покупки
вариантов.
Знакомиться с историей развития арифметики.
Точка, прямая,
Распознавать на чертежах, рисунках, описывать,
отрезок, луч.
используя терминологию, и изображать с помощью
Ломаная.
чертёжных инструментов: точку, прямую, отрезок, луч,
Измерение длины угол, ломаную, окружность.
отрезка,
Распознавать, приводить примеры объектов реального
метрические
мира, имеющих форму изученных фигур, оценивать их
единицы
линейные размеры.
измерения длины. Использовать линейку и транспортир как инструменты
Окружность и
для построения и измерения: измерять длину отрезка,
круг.
величину угла; строить отрезок заданной длины, угол,
Практическая
заданной величины; откладывать циркулем равные
работа
отрезки, строить окружность заданного радиуса.
«Построение узора Изображать конфигурации геометрических фигур из
из окружностей». отрезков, окружностей, их частей на нелинованной и
Угол. Прямой,
клетчатой бумаге; предлагать, описывать и обсуждать
острый, тупой и
способы, алгоритмы построения.
развёрнутый углы. Распознавать и изображать на нелинованной и
Измерение углов. клетчатой бумаге прямой, острый, тупой, развёрнутый
Практическая
углы; сравнивать углы.
работа
Вычислять длины отрезков, ломаных.
«Построение
Понимать и использовать при решении задач
углов»
зависимости между единицами метрической системы
мер; знакомиться с неметрическими системами мер;
выражать длину в различных единицах измерения.
Исследовать фигуры и конфигурации, используя
цифровые ресурсы
Дробь. ПравильМоделировать в графической, предметной форме, с
ные и неправиль- помощью компьютера понятия и свойства, связанные дроби.
ные с обыкновенной дробью.
Основное свойство Читать и записывать, сравнивать обыкновенные
дроби. Сравнение дроби, предлагать, обосновывать и обсуждать спосодробей.
бы упорядочивания дробей.
Сложение и
Изображать обыкновенные дроби точками на коорвычитание обык- динатной прямой; использовать координатную пряновенных дробей. мую для сравнения дробей.
Смешанная дробь. Формулировать, записывать с помощью букв основУмножение и де- ное свойство обыкновенной дроби; использовать осление обыкноновное свойство дроби для сокращения дробей и привенных дробей;
ведения дроби к новому знаменателю.
взаимно-обратные Представлять смешанную дробь в виде неправильдроби.
ной и выделять целую часть числа из неправильной
Решение
дроби.
текстовых задач,
Выполнять арифметические действия с обыкновен14

содержащих
дроби. Основные
задачи на дроби.
Применение букв
для записи
математических
выражений и
предложений

Наглядная
геометрия.
Многоуголь
ники
(10 ч)

Многоугольник..
Четырёхугольник,
прямоугольник,
квадрат.
Практическая
работа «Построение прямоугольника с заданными
сторонами на
нелинованной
бумаге».
Треугольник.
Площадь и
периметр прямоугольника и
многоугольников,
составленных из
прямоугольников,
единицы
измерения
площади.
Периметр
многоугольника.

ными дробями; применять свойства арифметических
действий для рационализации вычислений.
Выполнять прикидку и оценку результата вычислений; предлагать и применять приёмы проверки вычислений.
Проводить исследования свойств дробей, опираясь
на числовые эксперименты (в том числе с помощью
компьютера).
Распознавать истинные и ложные высказывания о
дробях, приводить примеры и контрпримеры, строить высказывания и отрицания высказываний.
Решать текстовые задачи, содержащие дробные данные, и задачи на нахождение части целого и целого
по его части; выявлять их сходства и различия.
Моделировать ход решения задачи с помощью рисунка, схемы, таблицы.
Приводить, разбирать, оценивать различные решения, записи решений текстовых задач.
Критически оценивать полученный результат, осуществлять самоконтроль, проверяя ответ на соответствие условию, находить ошибки.
Знакомиться с историей развития арифметики.
Описывать, используя терминологию, изображать с
помощью чертёжных инструментов и от руки, моделировать из бумаги многоугольники.
Приводить примеры объектов реального мира, имеющих форму многоугольника, прямоугольника, квадрата, треугольника, оценивать их линейные размеры.
Вычислять: периметр треугольника, прямоугольника, многоугольника; площадь прямоугольника, квадрата.
Изображать остроугольные, прямоугольные и тупоугольные треугольники.
Строить на нелинованной и клетчатой бумаге квадрат и прямоугольник с заданными длинами сторон.
Исследовать свойства прямоугольника, квадрата путём эксперимента, наблюдения, измерения, моделирования; сравнивать свойства квадрата и прямоугольника.
Конструировать математические предложения с помощью связок «некоторый», «любой». Распознавать
истинные и ложные высказывания о многоугольниках, приводить примеры и контрпримеры.
Исследовать зависимость площади квадрата от длины его стороны.
Использовать свойства квадратной сетки для построения фигур; разбивать прямоугольник на квадраты,
треугольники; составлять фигуры из квадратов и
прямоугольников и находить их площадь, разбивать
фигуры на прямоугольники и квадраты и находить
их площадь.
Выражать величину площади в различных единицах
измерения метрической системы мер, понимать и ис15

Десятичные Десятичная
дроби
запись дробей.
(38 ч)
Сравнение десятичных дробей.
Действия
с
десятичными
дробями.
Округление
десятичных
дробей.
Решение текстовых
задач,
содержащих
дроби. Основные
задачи на дроби

Наглядная
геометрия.
Тела и
фигуры в
пространст
ве
(9 ч)

Многогранники.
Изображение
многогранников.
Модели пространственных
тел.
Прямоугольный
параллелепипед,
куб. Развёртки
куба и параллелепипеда.
Практическая

пользовать зависимости между метрическими единицами измерения площади.
Знакомиться с примерами применения площади и
периметра в практических ситуациях. Решать задачи из реальной жизни, предлагать и обсуждать различные способы решения задач
Представлять десятичную дробь в виде обыкновенной, читать и записывать, сравнивать десятичные
дроби, предлагать, обосновывать и обсуждать способы упорядочивания десятичных дробей.
Изображать десятичные дроби точками на координатной прямой.
Выявлять сходства и различия правил арифметических действий с натуральными числами и десятичными дробями, объяснять их.
Выполнять арифметические действия с десятичными дробями; выполнять прикидку и оценку результата вычислений.
Применять свойства арифметических действий для
рационализации вычислений.
Применять правило округления десятичных дробей.
Проводить исследования свойств десятичных дробей, опираясь на числовые эксперименты (в том
числе с помощью компьютера), выдвигать гипотезы
и приводить их обоснования.
Распознавать истинные и ложные высказывания о
дробях, приводить примеры и контрпримеры, строить высказывания и отрицания высказываний.
Решать текстовые задачи, содержащие дробные данные, и на нахождение части целого и целого по его
части; выявлять их сходства и различия.
Моделировать ход решения задачи с помощью рисунка, схемы, таблицы. Приводить, разбирать, оценивать различные решения, записи решений текстовых задач.
Оперировать дробными числами в реальных жизненных ситуациях.
Критически оценивать полученный результат, осуществлять самоконтроль, проверяя ответ на соответствие условию, находить ошибки.
Знакомиться с историей развития арифметики
Распознавать на чертежах, рисунках, в окружающем мире прямоугольный параллелепипед, куб,
многогранники, описывать, используя терминологию, оценивать линейные размеры.
Приводить примеры объектов реального мира, имеющих форму многогранника, прямоугольного параллелепипеда, куба.
Изображать куб на клетчатой бумаге.
Исследовать свойства куба, прямоугольного параллелепипеда, многогранников, используя модели.
Распознавать и изображать развёртки куба и параллелепипеда. Моделировать куб и параллелепипед из
16

работа «Развёртка куба».
Объём
куба,
прямоугольного
параллелепипеда

бумаги и прочих материалов, объяснять способ моделирования.
Находить измерения, вычислять площадь поверхности; объём куба, прямоугольного параллелепипеда;
исследовать зависимость объёма куба от длины его
ребра, выдвигать и обосновывать гипотезу.
Наблюдать и проводить аналогии между понятиями
площади и объёма, периметра и площади поверхности.
Распознавать истинные и ложные высказывания о
многогранниках, приводить примеры и контрпримеры, строить высказывания и отрицания высказываний.
Решать задачи из реальной жизни
Повторение Повторение
Вычислять значения выражений, содержащих натуи обобщение основных
ральные числа, обыкновенные и десятичные дроби,
(10 ч)
понятий
выполнять преобразования чисел.
и методов курса Выбирать способ сравнения чисел, вычислений,
5 класса, обобприменять свойства арифметических действий для
щение знаний
рационализации вычислений.
Осуществлять самоконтроль выполняемых действий
и самопроверку результата вычислений.
Решать задачи из реальной жизни, применять математические знания для решения задач из других
учебных предметов.
Решать задачи разными способами, сравнивать
способы решения задачи, выбирать рациональный
способ.
6 класс (175 ч)
Название
раздела (темы)
курса
(число
Основное
часов)
содержание
Натуральные
Арифметические
числа
действия с
(30 ч)
многозначными
натуральными
числами. Числовые
выражения,
порядок
действий, использование
скобок. Округление
натуральных
чисел.
Делители и кратные
числа;
наибольший общий
делитель
и
наименьшее общее
кратное.
Разложение числа
на простые

Основные виды деятельности обучающихся
Выполнять арифметические действия с
многозначными
натуральными
числами,
находить значения
числовых выражений со скобками и без скобок;
вычислять значения выражений, содержащих
степени.
Выполнять прикидку и оценку значений
числовых выражений, применять приёмы
проверки результата.
Использовать
при
вычислениях
переместительное и сочетательное свойства
сложения и умножения, распределительное
свойство умножения относительно сложения,
свойства арифметических действий.
Исследовать
числовые
закономерности,
проводить числовые эксперименты, выдвигать
и обосновывать гипотезы.
Формулировать определения делителя и
кратного, наибольшего общего делителя и
наименьшего общего кратного, простого и
17

множители.
Делимость суммы
и
произведения.
Деление с остатком.
Решение текстовых
задач

Наглядная
геометрия.
Прямые на
плоскости
(7 ч)

Дроби
(32 ч)

Перпендикулярные
прямые.
Параллельные
прямые.
Расстояние между
двумя точками, от точки до
прямой, длина
пути
на
квадратной сетке.
Примеры прямых в
пространстве

составного чисел; использовать эти понятия
при решении задач.
Применять
алгоритмы
вычисления
наибольшего
общего делителя и наименьшего общего
кратного двух чисел, алгоритм разложения
числа на простые множители.
Исследовать условия делимости на 4 и 6.
Исследовать, обсуждать, формулировать и
обосновывать вывод о чётности суммы,
произведения: двух чётных чисел, двух
нечётных числе, чётного и нечётного чисел.
Исследовать свойства делимости суммы и
произведения чисел.
Приводить примеры чисел с заданными
свойствами, распознавать верные и неверные
утверждения о свойствах чисел, опровергать
неверные
утверждения
с
помощью
контрпримеров.
Конструировать математические предложения
с помощью связок «и», «или», «если…, то…».
Решать текстовые задачи, включающие
понятия
делимости,
арифметическим
способом,
использовать
перебор
всех
возможных вариантов.
Моделировать ход решения задачи с помощью
рисунка, схемы, таблицы.
Приводить, разбирать, оценивать различные
решения, записи решений текстовых задач.
Критически оценивать полученный результат,
находить ошибки, осуществлять самоконтроль,
проверяя ответ на соответствие условию
Распознавать на чертежах, рисунках случаи
взаимного расположения двух прямых.
Изображать
с
помощью
чертёжных
инструментов на нелинованной и клетчатой
бумаге две пересекающиеся прямые, две
параллельные прямые, строить прямую,
перпендикулярную данной.
Приводить примеры параллельности и
перпендикулярности прямых в пространстве.
Распознавать
в
многоугольниках
перпендикулярные и параллельные стороны.
Изображать многоугольники с параллельными,
перпендикулярными сторонами.
Находить расстояние между двумя точками, от
точки до прямой, длину пути на квадратной
сетке, в том числе используя цифровые
ресурсы

Обыкновенная
Сравнивать и упорядочивать дроби, выбирать
дробь, основное
способ сравнения дробей.
свойство
дроби, Представлять десятичные дроби в виде
18

сокращение
дробей. Сравнение
и упорядочивание дробей.
Десятичные дроби
и метрическая система мер.
Арифметические
действия с
обыкновенными и
десятичными дробями.
Отношение.
Деление в данном
отношении.
Масштаб, пропорция.
Понятие процента.
Вычисление процента от
величины и
величины по её
проценту.
Решение текстовых
задач, содержащих дроби и
проценты.
Практическая
работа «Отношение
длины
окружности к её
диаметру»

Наглядная
геометрия.
Симметрия
(6 ч)

Осевая симметрия.
Центральная
симметрия.
Построение
симметричных
фигур.
Практическая
работа «Осевая
симметрия».
Симметрия в
пространстве

обыкновенных дробей и обыкновенные в виде
десятичных, использовать эквивалентные
представления дробных чисел при их
сравнении, при вычислениях.
Использовать
десятичные
дроби
при
преобразовании величин в метрической системе
мер.
Выполнять арифметические действия с
обыкновенными и десятичными дробями.
Вычислять значения выражений, содержащих
обыкновенные и десятичные дроби, выполнять
преобразования дробей, выбирать способ,
применять свойства арифметических действий
для рационализации вычислений.
Составлять отношения и пропорции, находить
отношение величин, делить величину в данном
отношении.
Находить
экспериментальным
путём
отношение
длины окружности к её диаметру.
Интерпретировать масштаб как отношение
величин, находить масштаб плана, карты и
вычислять расстояния, используя масштаб.
Объяснять, что такое процент, употреблять
обороты речи со словом «процент». Выражать
проценты в дробях и дроби в процентах,
отношение двух величин в процентах.
Вычислять процент от числа и число по его
проценту.
Округлять дроби и проценты, находить
приближения чисел.
Решать задачи на части, проценты, пропорции,
на нахождение дроби (процента) от величины
и величины по её дроби (проценту), дроби
(процента), который составляет одна величина
от другой. Приводить, разбирать, оценивать
различные
решения,
записи
решений
текстовых задач.
Извлекать информацию из таблиц и диаграмм,
интерпретировать
табличные
данные,
определять наибольшее и наименьшее из
представленных данных
Распознавать на чертежах и изображениях,
изображать от руки, строить с помощью
инструментов фигуру (отрезок, ломаную,
треугольник, прямоугольник, окружность),
симметричную данной относительно прямой,
точки.
Находить примеры симметрии в окружающем
мире.
Моделировать из бумаги две фигуры,
симметричные
относительно
прямой;
конструировать
геометрические
19

Выражения
с буквами
(6 ч)

Применение букв
для записи
математических
выражений и
предложений.
Буквенные выражения и числовые
подстановки.
Буквенные
равенства, нахождение неизвестного
компонента.
Формулы

Наглядная
геометрия.
Фигуры
на плоскости
(14 ч)

Четырёхугольник,
примеры
четырёхугольников.
Прямоугольник,
квадрат: свойства
сторон,
углов,
диагоналей.
Измерение углов.
Виды
треугольников.
Периметр
многоугольника.
Площадь фигуры.
Формулы
периметра и площади
прямоугольника.
Приближённое измерение площади
фигур.
Практическая
работа «Площадь
круга»

конфигурации, используя свойство симметрии,
в том числе с помощью цифровых ресурсов.
Исследовать свойства изученных фигур,
связанные
с
симметрией,
используя
эксперимент, наблюдение, моделирование.
Обосновывать, опровергать с помощью
контрпримеров утверждения о симметрии
фигур
Использовать буквы для обозначения чисел,
при
записи
математических
утверждений,
составлять
буквенные выражения по условию задачи.
Исследовать
несложные
числовые
закономерности, использовать буквы для их
записи.
Вычислять числовое значение буквенного
выражения при заданных значениях букв.
Записывать формулы: периметра и площади
прямоугольника, квадрата; длины окружности,
площади круга; выполнять вычисления по этим
формулам.
Составлять
формулы,
выражающие
зависимости
между
величинами:
скорость,
время,
расстояние; цена, количество, стоимость;
производительность, время, объём работы;
выполнять вычисления по этим формулам.
Находить
неизвестный
компонент
арифметического действия
Изображать на нелинованной и клетчатой
бумаге
с
использованием
чертёжных
инструментов четырёхугольники с заданными
свойствами: с параллельными, перпендикулярными, равными сторонами, прямыми
углами и др., равнобедренный треугольник.
Предлагать и обсуждать способы, алгоритмы
построения.
Исследовать,
используя
эксперимент,
наблюдение,
моделирование,
свойства
прямоугольника, квадрата, разбивать на
треугольники. Обосновывать, опровергать с
помощью контрпримеров утверждения о
прямоугольнике,
квадрате,
распознавать
верные и неверные утверждения.
Измерять и строить с помощью транспортира
углы, в том числе в многоугольнике,
сравнивать углы; распознавать острые,
прямые, тупые, развёрнутые углы.
Распознавать, изображать остроугольный,
прямоугольный, тупоугольный, равнобедренный, равносторонний треугольники.
20

Вычислять периметр многоугольника, площадь
многоугольника
разбиением
на
прямоугольники,
на
равные
фигуры,
использовать метрические единицы измерения
длины и площади.
Положительные Прямоугольная
Объяснять
и
иллюстрировать
понятие
и отрицательные система координат на прямоугольной
системы
координат
на
числа
плоскости.
плоскости, использовать
(40 ч)
Координаты точки на терминологию; строить на координатной
плоскости, абсцисса плоскости точки и фигуры по заданным
и ордината.
координатам, находить координаты точек.
Столбчатые и
Читать столбчатые и круговые диаграммы;
круговые диаграммы. интерпретировать данные; строить столбчатые
Практическая работа диаграммы.
«Построение
Использовать информацию, представленную в
диаграмм».
таблицах, на диаграммах для решения
Решение текстовых текстовых задач и задач из реальной жизни.
задач, содержащих
данные, представленные в таблицах и
на диаграммах
Представление
Прямоугольная
Объяснять и иллюстрировать понятие
Данных
система координат прямоугольной
системы
координат
на
(6 ч)
на
плоскости,
использовать
терминологию;
плоскости.
строить на координатной плоскости точки и
Координаты точки
фигуры по заданным координатам, находить
на плоскости,
координаты точек.
абсцисса и ордината. Читать столбчатые и круговые диаграммы;
Столбчатые и
интерпретировать данные; строить столбчатые
круговые
диаграммы.
диаграммы.
Использовать информацию, представленную в
Практическая
таблицах, на диаграммах для решения
работа
текстовых задач и задач из реальной жизни.
«Построение
диаграмм».
Решение текстовых
задач, содержащих
данные,
представленные в
таблицах и на
диаграммах
Наглядная
Прямоугольный
Распознавать
на
чертежах,
рисунках,
геометрия.
параллелепипед, куб, описывать пирамиду, призму, цилиндр, конус,
Фигуры
призма, пирамида,
шар, изображать их от руки, моделировать из
в пространстве конус, цилиндр, шар бумаги, пластилина, проволоки и др.
(9 ч)
и сфера.
Приводить примеры объектов окружающего
Изображение
мира, имеющих формы названных тел.
пространственИспользовать терминологию: вершина, ребро,
ных фигур. Примеры грань, основание, высота, радиус и диаметр,
развёрток
развёртка.
многогранников,
Изучать, используя эксперимент, наблюдение,
цилиндра и конуса. измерение, моделирование, в том числе
Практическая работа компьютерное,
и
описывать
свойства
21

«Создание моделей
пространственных фигур».
Понятие объёма;
единицы измерения
объёма. Объём
прямоугольного
параллелепипеда,
куба, формулы
объёма

Повторение,
обобщение,
систематизация
(20 ч)

названных тел, выявлять сходства и различия:
между пирамидой и призмой; между
цилиндром, конусом и шаром.
Распознавать развёртки параллелепипеда,
куба,
призмы,
пирамиды,
конуса,
цилиндра;
конструировать данные тела из развёрток,
создавать их модели.
Создавать модели пространственных фигур (из
бумаги, проволоки, пластилина и др.)
Измерять
на
моделях:
длины
рёбер
многогранников, диаметр шара.
Выводить формулу объёма прямоугольного
параллелепипеда.
Вычислять
по
формулам:
объём
прямоугольного
параллелепипеда,
куба;
использовать единицы измерения объёма;
вычислять объёмы тел, составленных из кубов,
параллелепипедов; решать задачи с реальными
данными
Повторение
Вычислять значения выражений, содержащих
основных понятий
натуральные, целые, положительные и
и методов курсов 5 и отрицательные числа, обыкновенные и
6 классов,
десятичные дроби, выполнять преобразования
обобщение и
чисел и выражений.
систематизация
Выбирать
способ
сравнения
чисел,
знаний
вычислений,
применять свойства арифметических действий
для рационализации вычислений.
Решать задачи из реальной жизни, применять
математические знания для решения задач из
других предметов.
Решать
задачи
разными
способами,
сравнивать, выбирать способы решения задачи.
Осуществлять самоконтроль выполняемых
действий
и
самопроверку
результата
вычислений

ПЛАНИРОВАНИЕ ИЗУЧЕНИЯ УЧЕБНОГО КУРСА
Математика. 5 класс (170 ч)
№
Тема
КолПредметное
Характеристика деятельности
во
содержание
обучающихся
часов
§ 1.
16
Натуральные
числа и нуль.
Шкалы
1.
Представле1
Натуральное число. Читать, записывать, сравнивать
ние числовой
Ряд натуральных
натуральные числа; предлагать и
информации
чисел. Число 0.
обсуждать способы упорядочивания
в таблицах
Изображение
чисел.
натуральных чисел Выполнять арифметические
2.
Цифры и
2
точками на
действия с натуральными числами,
22

числа
3.

Отрезок и
его длина.
Ломаная.
Многоуголь
ник

3

4.

Плоскость,
прямая, луч,
угол

2

5.

Шкалы и
координатна
я прямая
Сравнение
натуральных
чисел

3

Представление
числовой
информации в
столбчатых
диаграммах

2

6.

7.

2

координатной
(числовой) прямой.
Десятичная система
счисления.
Позиционная
система счисления.
Римская нумерация
как пример
непозиционной
системы счисления.
Сравнение
натуральных чисел,
сравнение
натуральных чисел с
нулём. Способы
сравнения. Решение
логических задач.
Решение задач
перебором всех
возможных
вариантов.
Представление
данных в виде
таблиц, столбчатых
диаграмм.
Наглядные
представления о
фигурах на
плоскости: точка,
прямая, отрезок,
луч, угол, ломаная,
многоугольник.
Длина отрезка,
метрические
единицы длины.
Длина ломаной,
периметр
многоугольника

вычислять значения числовых
выражений со скобками и без скобок.
Изображать координатную прямую,
отмечать числа точками на
координатной
прямой, находить координаты точки.
Исследовать свойства натурального
ряда, чисел 0 и 1 при сложении и
умножении.
Решать задачи с помощью перебора
всех возможных вариантов.
Распознавать на чертежах, рисунках,
описывать, используя терминологию
изображать с помощью чертёжных
инструментов: точку, прямую,
отрезок, луч, угол, ломаную,
окружность.
Распознавать, приводить примеры
объектов реального мира, имеющих
форму изученных фигур, оценивать
их линейные размеры.
Использовать линейку и транспортир
как инструменты для построения и
измерения: измерять длину отрезка,
величину угла; строить отрезок
заданной длины, угол, заданной
величины; откладывать циркулем
равные отрезки, строить окружность
заданного радиуса.
Описывать, используя терминологию, изображать с помощью
чертёжных инструментов и от руки,
моделировать из бумаги многоугольники.
Приводить примеры объектов
реального мира, имеющих форму
многоугольника, прямоугольника,
квадрата, треугольника, оценивать их
линейные размеры.
Вычислять: периметр треугольника,
прямоугольника, многоугольника;
площадь прямоугольника, квадрата.
Использовать информацию,
представленную в таблицах, на
диаграммах для решения текстовых
задач интерпретировать данные;
строить столбчатые диаграммы.
Знакомиться с историей развития
арифметики и задач из реальной
жизни.
Читать столбчатые диаграммы;
интерпретировать данные; строить
столбчатые диаграммы.
23

8.

9.

10.
11.

Контрольная
работа № 1

1

§ 2. Сложение
и вычитание
натуральных
чисел
Действие
сложения.
Свойства
сложения
Действие
вычитания.
Свойства
вычитания

15

Контрольная
работа № 2

1

Числовые и
буквенные
выражения
Уравнения

4

3

3

3

Темы 1–7

Сложение
натуральных чисел;
свойство нуля при
сложении.
Вычитание как
действие, обратное
сложению.
Переместительное
и сочетательное
свойства (законы)
сложения.
Проверка результата арифметического действия.
Решение текстовых
задач арифметическим способом.
Использование при
решении задач таблиц и схем.
Решение задач,
содержащих зависимости, связывающие величины:
скорость, время,
расстояние; цена,
количество, стоимость. Единицы
измерения: массы,
цены; расстояния,
времени, скорости.
Связь между единицами измерения
каждой величины
Темы 8–9
Использование
букв для обозначения неизвестного
компонента и
записи свойств
арифметических

Знакомиться с историей развития
арифметики
Контролировать и оценивать свою
работу;
ставить цели на следующий этап
обучения

Выполнять арифметические
действия с натуральными числами,
вычислять значения числовых
выражений со скобками и без скобок.
Использовать при вычислениях
переместительное и сочетательное
свойства сложения; формулировать
и применять правила преобразования числовых выражений на основе
свойств арифметических действий

Контролировать и оценивать свою
работу; ставить цели на следующий
этап обучения
Использовать буквы для обозначения
чисел, при записи математических
утверждений, составлять буквенные
выражения по условию задачи.
Исследовать несложные числовые
закономерности, использовать буквы
24

действий.
Компоненты
действий, связь
между ними

12.

13.

14.

15.
16.

Контрольная
работа № 3

1

§ 3.
Умножение
и деление
натуральны
х чисел
Действие
умножения.
Свойства
умножения

25

3

Умножение
натуральных чисел;
свойства нуля и
единицы при умно-

Выполнять арифметические
действия с натуральными числами,
вычислять значения числовых
выражений со скобками и без скобок.

Действие
деления.
Свойства
деления
Деление с
остатком

4

Решать текстовые задачи арифметическим способом, использовать
зависимости между величинами
(скорость, время, расстояние; цена,
количество, стоимость и др.):
анализировать и осмысливать
текст задачи, переформулировать
условие, извлекать необходимые
данные, устанавливать зависимости
между величинами, строить логическую цепочку рассуждений.
Моделировать ход решения задачи с
помощью рисунка, схемы, таблицы.
Приводить, разбирать, оценивать
различные решения, записи решений
текстовых задач.
Критически оценивать полученный
результат, осуществлять самоконтроль, проверяя ответ на соответствие
условию, находить ошибки.
Находить остатки от деления и
неполное частное

Контрольная
работа № 4

1

жении. Деление как
действие, обратное
умножению.
Деление с остатком.
Переместительное и
сочетательное
умножения,
распределительное
свойство (закон)
умножения.
Проверка результата арифметического действия.
Решение текстовых
задач арифметическим способом.
Использование при
решении задач
таблиц и схем.
Решение задач,
содержащих
зависимости,
связывающие
величины: скорость,
время, расстояние;
цена, количество,
стоимость
Темы 12 – 14

Упрощение
выражений
Порядок

4

3

3

Темы 10–11

для их записи.
Вычислять числовое значение
буквенного выражения при заданных
значениях букв.
Знакомиться с историей развития
арифметики
Контролировать и оценивать свою
работу; ставить цели на следующий
этап обучения

Числовое
выражение.
Вычисление

Контролировать и оценивать свою
работу; ставить цели на следующий
этап обучения
Вычислять числовое значение
буквенного выражения при заданных
значениях букв.
25

17.
18.
19.

20.
21.

22.
23.
24.

действий в
вычислениях
Степень с
натуральным
показателем
Делители и
кратные
Свойства и
признаки
делимости

2
2
2

Контрольная
работа № 5

1

§ 4.
Площади и
объёмы
Формулы
Площадь.
Формула
площади
прямоугольника
Единицы
измерения
площадей
Прямоуголь
ный параллелепипед
Объёмы.
Объём прямоугольного
параллелепи
педа

11
2
2

2
1
3

значений числовых
выражений; порядок выполнения
действий.
Использование при
вычислениях
переместительного
и сочетательного
свойств (законов)
сложения и умножения, распределительного свойства
умножения.
Степень с
натуральным
показателем.
Запись числа в виде
суммы разрядных
слагаемых.
Темы 15–19

Записывать произведение в виде
степени, читать степени, использовать терминологию (основание,
показатель), вычислять значения
степеней.
Формулировать определения
делителя и кратного, называть
делители и кратные числа; распознавать простые и составные числа;
формулировать и применять
признаки делимости на 2, 3, 5, 9, 10;
применять алгоритм разложения
числа
на простые множители.
Знакомиться с историей развития
арифметики

Наглядные
представления о
фигурах
на плоскости:
многоугольник;
прямоугольник,
квадрат; треугольник, о равенстве
фигур.
Использование
свойств сторон и
Углов прямоугольника, квадрата.
Площадь
прямоугольника и
многоугольников,
составленных из
прямоугольников, в
том числе фигур,
изображённых на
клетчатой бумаге.
Единицы измерения площади.
Наглядные
представления о
пространственных
фигурах: прямоу-

Изображать остроугольные,
прямоугольные и тупоугольные
треугольники.
Строить на нелинованной и клетчатой бумаге квадрат и прямоугольник
с заданными длинами сторон.
Исследовать свойства
прямоугольника, квадрата путём
эксперимента, наблюдения, измерения, моделирования; сравнивать
свойства квадрата и прямоугольника.
Исследовать зависимость площади
квадрата от длины его стороны.
Выражать величину площади в
различных единицах измерения
метрической системы мер, понимать
и использовать зависимости
между метрическими единицами
измерения площади.
Знакомиться с примерами применения площади и периметра в
практических ситуациях. Решать
задачи из реальной жизни, предлагать и обсуждать различные
способы решения задач.
Распознавать на чертежах, рисунках, в окружающем мире прямоу-

Контролировать и оценивать свою
работу; ставить цели на следующий
этап обучения

26

гольный параллелепипед, куб,
многогранники.
Изображение
простейших
многогранников.
Развёртки куба и
параллелепипеда.
Создание моделей
многогранников
(из бумаги, проволоки, пластилина
и др.). Объём
прямоугольного
параллелепипеда,
куба. Единицы
измерения объёма

25.
26.

27.
28.

Контрольная
работа № 6

1

§ 5.
Обыкновен
ные дроби
Окружность,
круг, шар,
цилиндр
Доли и
дроби.
Изображение дробей на
координатной прямой
Сравнение
дробей

47

Правильные
и неправильные дроби

2

2
4

3

гольный параллелепипед, куб, многогранники, описывать, используя
терминологию, оценивать линейные размеры.
Приводить примеры объектов
реального мира, имеющих форму
многогранника, прямоугольного
параллелепипеда, куба.
Изображать куб на клетчатой
бумаге.
Исследовать свойства куба,
прямоугольного параллелепипеда,
многогранников, используя модели.
Распознавать и изображать
развёртки куба и параллелепипеда.
Моделировать
куб и параллелепипед из бумаги и
прочих материалов, объяснять
способ моделирования.
Находить измерения, вычислять
площадь поверхности; объём куба,
прямоугольного параллелепипеда;
исследовать зависимость объёма
куба от длины его ребра, выдвигать
и обосновывать гипотезу.
Знакомиться с историей развития
арифметики
Темы 20–24
Контролировать и оценивать свою
работу; ставить цели на следующий
этап обучения
Глава 2. Дробные числа

Наглядные
представления о
фигурах на плоскости: окружность,
круг.
Изображение
фигур, в том числе
на клетчатой
бумаге. Построение
конфигураций из
частей прямой,
окружности на
Наглядные
представления о
пространственных
фигурах: цилиндр,
шар и сфера.
Представление о
дроби как способе

Изображать конфигурации
геометрических фигур из отрезков,
окружностей, их частей на нелиноВанной и клетчатой бумаге, строить
окружность заданного радиуса.
Читать и записывать, сравнивать
обыкновенные дроби, предлагать,
обосновывать и обсуждать способы
упорядочивания дробей.
Изображать обыкновенные дроби
точками на координатной прямой;
использовать координатную
помощью букв основное свойство
обыкновенной дроби; использовать
основное свойство дроби для
сокращения дробей и приведения
дроби к новому знаменателю

27

29.

30.

31.
32.

33.
34.

записи части
величины.
Обыкновенные
дроби. Правильные
и неправильные
дроби.
Изображение
дробей точками на
числовой прямой.
Сравнение дробей
Темы 25–28

Контрольная
работа № 7

1

Сложение и
вычитание
дробей с
одинаковым
и знаменателями
Деление
натуральных
чисел и
дроби
Смешанные
числа
Сложение и
вычитание
смешанных
чисел

3

2

Сложение и
вычитание дробей.
Смешанная дробь;
представление
смешанной дроби в
виде неправильной
дроби и выделение
целой части числа
из неправильной
дроби.
Решение основных
задач на дроби.
Решение текстовых
задач арифметическим способом.
Использование при
решении задач
таблиц и схем.
Решение задач,
содержащих зависимости, связывающие величины:
скорость, время,
расстояние; цена,
количество,
стоимость

Контрольная
работа № 8

1

Темы 29–32

Основное
свойство
дроби
Сокращение

1

Основное свойство
дроби.
Сокращение
дробей.

2

2

2

Контролировать и оценивать свою
работу; ставить цели на следующий
этап обучения
Выполнять арифметические
действия с обыкновенными
дробями; применять свойства
арифметических действий для
рационализации вычислений.
Представлять смешанную дробь в
виде неправильной и выделять целую
часть числа из неправильной дроби.
Решать текстовые задачи
арифметическим способом,
использовать зависимости между
величинами (скорость, время,
расстояние; цена, количество,
стоимость и др.): анализировать и
осмысливать текст задачи,
переформулировать условие,
извлекать необходимые данные,
устанавливать зависимости между
величинами, строить логическую
цепочку рассуждений.
Моделировать ход решения задачи с
помощью рисунка, схемы, таблицы.
Приводить, разбирать, оценивать
различные решения, записи решений
текстовых задач.
Критически оценивать полученный
результат, осуществлять
самоконтроль, проверяя ответ на
соответствие условию, находить
ошибки.
Знакомиться с историей развития
арифметики
Контролировать и оценивать свою
работу; ставить цели на следующий
этап обучения
Формулировать, записывать с
помощью букв основное свойство
обыкновенной дроби; использовать
основное свойство дроби для
28

35.

36.

37.
38.
39.
40.

41.
42.
43.

44.

дробей
Приведение
дробей к
общему
знаменателю
Сравнение,
сложение и
вычитание
дробей с
разными
знаменателя
ми
Контрольная
работа № 9

3

5

1

Умножения
дробей
Нахождение
части целого
Деление
дробей
Нахождение
целого по
его части

2

Контрольная
работа № 10

1

§ 6.
Десятичные
дроби
Десятичная
запись
дробей
Сравнение
десятичных
дробей
Сложение и
вычитание
десятичных
дробей
Округление
чисел.
Прикидка

34

4
2
4

2
3
5

2

Приведение
дроби к новому
знаменателю.
Сложение и
вычитание дробей

Темы 33–36
Умножение и
деление дробей;
взаимно-обратные
дроби. Решение
основных задач на
дроби.
Нахождение части
целого и целого

Темы 37–40

Десятичная запись
дробей.
Представление
десятичной дроби в
Виде обыкновенной.
Изображение
десятичных дробей
точками на
числовой прямой.
Сравнение
десятичных дробей.
Арифметические
действия с десятичными дробями.
Округление
натуральных чисел.
Округление

сокращения дробей и приведения
дроби к новому знаменателю.
Выполнять арифметические
действия с обыкновенными
дробями; применять свойства
арифметических действий для
рационализации вычислений

Контролировать и оценивать свою
работу; ставить цели на следующий
этап обучения
Выполнять арифметические
действия с обыкновенными дробями; применять свойства арифметических действий для рационализации вычислений.
Решать текстовые задачи, содержащие дробные данные, и задачи на
нахождение части целого и целого по
его части; выявлять их сходства и
различия.
Оперировать дробными числами в
реальных жизненных ситуациях.
Знакомиться с историей развития
арифметики
Контролировать и оценивать свою
работу; ставить цели на следующий
этап обучения

Представлять десятичную дробь в
виде обыкновенной, читать и
записывать, сравнивать десятичные
дроби, предлагать, обосновывать и
обсуждать способы упорядочивания
десятичных дробей.
Изображать десятичные дроби
точками на координатной прямой.
Выявлять сходства и различия
правил арифметических действий с
натуральными числами и
десятичными дробями, объяснять их.
Выполнять арифметические
действия с десятичными дробями;
выполнять прикидку и оценку
результата вычислений.
Применять свойства арифмети29

45.

46.

47.
48.

Контрольная
работа № 11

1

Умножение
десятичной
дроби на
натуральное
число
Деление
десятичной
дроби на
натуральное
число
Умножение
на десятичную дробь
Деление на
десятичную
дробь

3

Контрольная
работа № 12

1

§ 7.
Инструменты для вычислений и

5

5
7

десятичных дробей.
Решение текстовых
задач арифметическим способом.
Использование при
решении задач
таблиц и схем.
Решение задач,
содержащих
зависимости,
связывающие
величины: скорость,
время, расстояние;
цена, количество,
стоимость
Темы 41–44

ческих действий для рационализации
вычислений.
Знакомиться с историей развития
арифметики

Контролировать и оценивать свою
работу;
ставить цели на следующий этап
обучения
Арифметические
Выполнять арифметические
действия сдесятидействия с десятичными дробями;
чными дробями.
выполнять прикидку и оценку
Решение текстовых результата вычислений.
задач арифметиПрименять свойства арифметичесческим способом.
кихдействий для рационализации
Использование при вычислений.
решении задач
Решать текстовые задачи арифметитаблиц и схем.
ческим способом, использовать
Решение задач,
зависимости между величинами
содержащих
(скорость, время, расстояние; цена,
зависимости,
количество, стоимость и др.):
связывающие
анализировать и осмысливать
величины:скорость, текст задачи, переформулировать
время, расстояние; условие, извлекать необходимые
цена, количество,
данные, устанавливать зависимости
стоимость
между величинами, строить логическую цепочку рассуждений.
Моделировать ход решения задачи с
помощью рисунка, схемы, таблицы.
Приводить, разбирать, оценивать
различные решения, записи решений
текстовых задач.
Критически оценивать полученный
результат, осуществлять самоконтроль, проверяя ответ на соответствие
условию, находить ошибки
Темы 45–48
Контролировать и оценивать свою
работу; ставить цели на следующий
этап обучения

30

49.
50.
51.

измерений
Калькулятор
Виды углов.
Чертёжный
треугольник
Измерение
углов.
Транспортир
Контрольная
работа № 13

3
4
3
2

Повторение
Итоговое
повторение
курса
математики
5 класса

11
10

Итоговая
контрольная
работа
№ 14
Итого

1

Угол. Прямой,
острый, тупой и
развёрнутый углы.
Измерение и
построение углов с
помощью
транспортира
Темы 49–51

Распознавать и изображать на
нелинованной 50 Виды углов.
Чертёжный 4 4 и клетчатой бумаге
прямой, острый, тупой, развёрнутый
углы; сравнивать углы.
Знакомиться с историей развития
арифметики
Контролировать и оценивать свою
работу; ставить цели на следующий
этап обучения

Повторение
основных понятий
и методов курса 5
класса, обобщение
знаний

Вычислять значения выражений,
содержащих натуральные числа,
обыкновенные и десятичные дроби,
выполнять преобразования чисел.
Выбирать способ сравнения чисел,
вычислений, применять свойства
арифметических действий для
рационализации вычислений.
Осуществлять самоконтроль
выполняемых действий и
самопроверку результата вычислений.
Решать задачи из реальной жизни,
применять математические знания
для решения задач из других учебных
предметов.
Решать задачи разными способами,
сравнивать способы решения задачи,
выбирать рациональный способ
Контролировать и оценивать свою
работу; ставить цели на следующий
учебный год

Темы 1–51

170
Математика. 6 класс (170 ч)

№

Тема

§1
Вычисления и
измерения
Повторение
курса
математики
5 класса

Колво
часов
23
8

Предметное
содержание

Характеристика деятельности
обучающихся

Глава 1. Смешанные числа

Арифметические
действия с многозначными натуральными
числами. Использование
при вычислениях
переместительного и
сочетательного свойств

Выполнять арифметические
действия с многозначными
натуральными числами,
находить значения числовых
выражений со скобками и без
скобок; вычислять значения
выражений, содержащих
31

сложения и умножения,
распределительного
свойства умножения.
Округление натуральных
чисел.
Делители и кратные
числа.
Делимость суммы и
произведения.
Свойства арифметических действий.
Формулы;формулы
периметра и площади
прямоугольника,
квадрата, объёма
параллелепипеда и куба.
Обыкновенная дробь,
основное свойство дроби,
сокращение дробей.
Сравнение и упорядочивание дробей.
Арифметические
действия и числовые
выражения с
обыкновенными и
десятичными дробями.
Наглядные представления о фигурах на плоскости: точка, прямая,
отрезок, луч, угол,
ломаная, многоугольник,
четырёхугольник,
треугольник,окружность,
круг

1
2
3

4

Среднее
арифметическое
Проценты
Представление
числовой
информации в
круговых
диаграммах
Виды

3
3
3

3

степени.
Использовать при
вычислениях
переместительное и
сочетательное
свойства сложения и
умножения,
распределительное свойство
умножения относительно
сложения, свойства
арифметических действий.
Исследовать свойства
делимости суммы и
произведения чисел.
Записывать формулы:
периметра и площади
прямоугольника, квадрата;
выполнять вычисления по
этим
формулам.
Сравнивать углы;
распознавать острые, прямые,
тупые, развёрнутые углы.
Выполнять арифметические
действия с обыкновенными и
десятичными дробями.
Вычислять по формулам:
объём прямоугольного
параллелепипеда, куба;
использовать единицы
измерения объёма.
Решать задачи на части,
проценты, на нахождение дроби
(процента) от величины и
величины по её дроби
(проценту), дроби (процента),
который составляет одна
величина от другой.
Распознавать на чертежах и
изображениях, изображать от
руки, строить с помощью
инструментов фигуру (отрезок,
ломаную, треугольник,
прямоугольник)
Понятие процента.
Объяснять, что такое процент,
Вычисление процента от употреблять обороты речи со
величины и величины по словом «процент». Выражать
её проценту. Выражение проценты в дробях и дроби в
процентов десятичными процентах, отношение двух
дробями. Решение задач величин в процентах.
на проценты. Выражение Вычислять процент от числа и
отношения величин в
число по его проценту.
процентах.
Округлять дроби и проценты,
32

5

треугольников
Понятие
множества

2

Контрольная
работа № 1

1

§ 2. Действия
со
смешанными

57

Представление данных с
помощью диаграмм.
Чтение круговых
диаграмм.
Решение текстовых
задач арифметическим
способом. Решение
задач, содержащих
зависимости,
связывающих величины:
скорость, время,
расстояние; цена,
количество, стоимость;
производительность,
время, объём работы.
Единицы измерения:
массы, стоимости;
расстояния, времени,
скорости. Связь между
единицами измерения
каждой величины.
Виды треугольников:
остроугольный,
прямоугольный,
тупоугольный;
равнобедренный,
равносторонний

Темы 1–5

находить приближения чисел.
Решать задачи на части,
проценты, пропорции, на
нахождение дроби (процента)
от величины и величины по её
дроби (проценту), дроби
(процента), которую составляет
одна величина от другой.
Извлекать информацию из
таблиц и диаграмм,
интерпретировать табличные
данные, определять наибольшее и наименьшее из
представленных данных.
Читать и строить круговые
диаграммы;
интерпретировать данные.
Использовать информацию,
представленную в таблицах, на
диаграммах для решения
текстовых задач и задач из
реальной жизни.
Моделировать ход решения
задачи с помощью рисунка,
схемы, таблицы.
Приводить, разбирать,
оценивать различные решения,
записи решений текстовых
задач.
Критически оценивать
полученный результат,
находить ошибки,осуществлять
самоконтроль, проверяя ответ
на соответствие условию.
Распознавать, изображать
остроугольный,прямоугольный
тупоугольный,равнобедренный,
равносторонний треугольники.
Вычислять периметр
многоугольника, площадь
многоугольника разбиением на
прямоугольники, на равные
фигуры, использовать
метрические единицы
измерения длины и площади.
Знакомиться с историей
развития арифметики
Контролировать и оценивать
свою работу; ставить цели на
следующий этап обучения

33

6

7

8

9

10

11

12

13

14
15

числами
Разложение
числа на
простые
множители
Наибольший
общий делитель.
Взаимно
простые числа
Наименьшее
общее кратное
натуральных
чисел

2

3

4

Делители и кратные
числа;
наибольший общий
делитель и
наименьшее общее
кратное

Формулировать определения
делителя и кратного, наибольшего общего делителя и наименьшего общего кратного, простого и
составного чисел; использовать
эти понятия при решении задач.
Применять алгоритмы
вычисления наибольшего общего
делителя и наименьшего общего
кратного двух чисел,
алгоритм разложения числа на
простые множители.
Знакомиться с историей
развития арифметики
Темы 6–8
Контролировать и оценивать
свою работу; ставить цели на
следующий этап обучения
Обыкновенная дробь,
Сравнивать и упорядочивать
основное свойство дроби, дроби, выбирать способ
сокращение дробей.
сравнения дробей.
Сравнение и упорядочи- Выполнять арифметические
вание дробей.
действия с обыкновенными и
Арифметические дейстдесятичными дробями
вия и числовые выражения с обыкновенными
дробями

Контрольная
работа № 2

1

Приведение
дробей к
наименьшему
общему
знаменателю
Сравнение,
сложение и
вычитание
обыкновенных
дробей
Контрольная
работа № 3

4

1

Темы 9–10

Действие сложения и вычитания смешанных чисел
Итоговый урок
по материалу
Контрольная
работа № 4

7

1

Арифметические
действия и
числовые выражения с
обыкновенными
дробями

1

Темы 11–12

Действие
умножения
смешанных
чисел
Нахождение
дроби от числа
Применение
распределитель
ного свойства
умножения

4

6

4
5

Контролировать и оценивать
свою работу; ставить цели на
следующий этап обучения
Выполнять арифметические
действия с обыкновенными и
десятичными дробями.
Знакомиться с историей
развития арифметики

Контролировать и оценивать
свою работу; ставить цели на
следующий этап обучения
Арифметические
Выполнять арифметические
действия и числовые
действия с обыкновенными и
выражения с обыкновен- десятичными дробями.
ными дробями. Решение Моделировать ход решения
задач на нахождение
задачи с помощью рисунка,
части от целого.
схемы, таблицы.
Свойства арифметических Приводить, разбирать,
действий.
оценивать различные решения,
Решение текстовых
записи решений текстовых
задач арифметическим
задач.
способом. Решение
Критически оценивать
задач, содержащих
полученный результат,
34

16

17
18

Контрольная
работа № 5

1

Действие
деления
смешанных
чисел
Нахождение
числа по его
дроби
Дробные
выражения

5

Контрольная
работа № 6

1

4
3

зависимости, связывающих величины: скорость,
время, расстояние; цена,
количество, стоимость;
производительность,
время, объём работы.
Единицы измерения:
массы, стоимости;
расстояния, времени,
скорости. Связь между
единицами измерения
каждой величины
Темы 13–15
Арифметические
действия и
числовые выражения с
обыкновенными
дробями. Решение
задач на нахождение
целого по его
части. Свойства
арифметических
действий.
Наглядные
представления о
пространственных
фигурах:
параллелепипед, куб,
призма,
пирамида. Изображение
пространственных
фигур. Примеры
развёрток
многогранников,
цилиндра
и конуса. Создание
моделей
пространственных фигур
(из бумаги,
проволоки, пластилина
и др.)

Темы 16–18

находить ошибки, осуществлять
самоконтроль, проверяя ответ
на соответствие условию.
Решать задачи на части, на
нахождение дроби от величины

Контролировать и оценивать
свою работу; ставить цели на
следующий этап обучения
Выполнять арифметические
действия с обыкновенными и
десятичными дробями. Решать
задачи на части, проценты, на
нахождение дроби (процента)
от величины и величины по её
дроби (проценту), дроби
(процента), который составляет
одна величина от другой.
Распознавать на чертежах,
рисунках, описывать
пирамиду, призму, цилиндр,
конус, шар, изображать их от
руки, моделировать из бумаги,
пластилина, проволоки и др.
Приводить примеры
объектов окружающего мира,
имеющих формы названных
тел.
Использовать терминологию:
вершина, ребро, грань,
основание, высота, радиус и
диаметр, развёртка.
Распознавать развёртки
параллелепипеда, куба, призмы,
пирамиды, конуса, цилиндра;
конструировать данные тела
из развёрток, создавать их
модели.
Создавать модели
пространственных фигур (из
бумаги, проволоки, пластилина
и др.)
Знакомиться с историей
развития арифметики
Контролировать и оценивать
свою работу; ставить цели на
следующий этап обучения
35

19
20
21

22
23
24

§ 3.
Отношения и
пропорции
Отношения
Пропорции
Прямая и
обратная
пропорциональ
ные
зависимости

19

Контрольная
работа № 7

1

Масштаб
Симметрия
Длина
окружности и
площадь
круга. Шар

2
2
3

5
2
3

Отношение. Деление в
данном отношении,
пропорция. Применение
пропорций при решении
задач.
Решение задач, связанных с отношением,
пропорциональностью
величин, процентами;
решение основных задач
на дроби и проценты
Темы 19–21
Масштаб. Симметрия:
центральная,
осевая и зеркальная
симметрии.
Построение
симметричных фигур.
Приближённое
измерение длины
окружности, площади
круга. Шар и
сфера

Составлять отношения и
пропорции,
находить отношение величин,
делить величину в данном
отношении.
Знакомиться с историей
развития арифметики

Контролировать и оценивать
свою работу; ставить цели на
следующий этап обучения
Находить
экспериментальным путём
отношение длины окружности к
её диаметру.
Интерпретировать масштаб как
отношение величин, находить
масштаб плана, карты и вычислять расстояния, используя
масштаб.
Распознавать на чертежах и
изображениях, изображать от
руки, строить с помощью
инструментов фигуру (отрезок,
ломаную, треугольник,
прямоугольник, окружность),
симметричную данной
относительно прямой, точки.
Находить примеры симметрии
в окружающем мире.
Моделировать из бумаги две
фигуры, симметричные
относительно прямой;
Конструировать геометрические конфигурации, используя
свойство симметрии, в том
числе с помощью цифровых
ресурсов.
Исследовать свойства изученных фигур, связанные с
симметрией, используя
эксперимент, наблюдение,
моделирование.
Обосновывать, опровергать с
помощью контрпримеров
утверждения о симметрии
фигур.
36

Записывать формулы: длины
окружности, площади круга;
выполнять вычисления по
этим формулам
Темы 22–24
Контролировать и оценивать
свою работу; ставить цели на
следующий этап обучения
Глава 2. Рациональные числа

Контрольная
работа № 8

1

§ 4. Действия с
рациональными числами
Положительные
и отрицательные числа
Противоположные числа
Модуль числа
Сравнение
положительных
и отрицательных чисел
Изменение
величин

35

Контрольная
работа № 9

1

Темы 25–29

30 Сложение
положительных и
отрицательных
чисел с помощью
координатной
прямой
31 Сложение
отрицательных
чисел
32 Сложение чисел
с разными
знаками
33 Действие
вычитания
Контрольная
работа № 10

2

Арифметические
действия с
положительными и
отрицательными
числами.

1

Темы 30–33

34

3

Арифметические действия с положительными и
отрицательными
числами. Дробное число
как результат деления.
Представление десятич-

25
26
27
28

29

35
36

Действие
умножения
Действие
деления
Рациональные
числа

3
2
2
3

Положительные и
отрицательные
числа. Целые числа.
Модуль числа,
геометрическая
интерпретация
модуля числа. Сравнение
чисел.
Цилиндр, конус, шар

2

2
3

Приводить примеры использования в реальной жизни
положительных и отрицательных чисел.
Изображать целые числа,
положительные и отрицательные числа точками на
числовой прямой,использовать
числовую прямую для
сравнения чисел.
Применять правила сравнения,
упорядочивать целые числа;
находить модуль числа.
Знакомиться с историей
развития арифметики
Контролировать и оценивать
свою работу; ставить цели на
следующий этап обучения
Формулировать правила
вычисления с положительными
и отрицательными числами,
находить значения числовых
выражений, содержащих
действия с положительными и
отрицательными числами.
Применять свойства сложения
и умножения для
преобразования сумм и
произведений

3

3
2

Контролировать и оценивать
свою работу; ставить цели на
следующий этап обучения
Вычислять значения
выражений, содержащих
обыкновенные и десятичные
дроби, выполнять
преобразования дробей,
выбирать способ, применять
37

37

38
39
40

41

Свойства
действий с
рациональными
числами

2

Контрольная
работа № 11

1

§ 5. Решение
уравнений
Раскрытие
скобок
Коэффициент
Подобные
слагаемые

13

Контрольная
работа № 12

1

Решение
уравнений

4

2
3
2

ной дроби в виде обыкновенной дроби и
возможность представления обыкновенной дроби
в виде десятичной.
Оценка и прикидка,
округление результата.
Применение букв для
записи математических
выражений и
предложений.
Решение логических
задач. Решение задач
перебором всех
возможных вариантов
Темы 34–37

свойства арифметических
действий для рационализации
вычислений.
Представлять десятичные
дроби в виде обыкновенных
дробей и обыкновенные в виде
десятичных, использовать
Эквивалентные
представления дробных
чисел при их сравнении, при
вычислениях.
Знакомиться с историей
развития арифметики
Контролировать и оценивать
свою работу; ставить цели на
следующий этап обучения

Буквенные выражения и
числовые подстановки.
Изображение чисел на
координатной прямой.
Числовые промежутки

Использовать буквы для
обозначения чисел, при записи
математических утверждений,
составлять буквенные
выражения по условию задачи.
Исследовать несложные
числовые закономерности,
использовать буквы для
их записи.
Вычислять числовое значение
буквенного выражения при
заданных значениях букв.
Знакомиться с историей
развития арифметики
Темы 38–40
Контролировать и оценивать
свою работу; ставить цели на
следующий этап обучения
Буквенные равенства,
Находить неизвестный
нахождение неизвестного компонент арифметического
компонента.
действия.
Составление буквенных Моделировать ход решения
выражений по условию
задачи с помощью рисунка,
задачи.
схемы, таблицы.
Решение задач, содержа- Приводить, разбирать,
щих зависимости,
оценивать различные решения,
связывающих величины: записи решений текстовых
скорость, время, расстоя- задач.
ние; цена, количество,
Критически оценивать
стоимость;
полученный результат,
производительность,
находить ошибки, осуществлять
время, объём работы.
самоконтроль, проверяя
Единицы измерения:
ответ на соответствие условию
массы, стоимости;
38

42
43
44
45

Контрольная
работа № 13

1

§ 6.
Координаты
на плоскости
Перпендикуляр
ные прямые
Параллельные
прямые
Координатная
плоскость
Представление
числовой
информации на
графиках

11
2
2
3
3

расстояния, времени,
скорости. Связь между
единицами измерения
каждой величины
Тема 41

Взаимное расположение
двух прямых на
плоскости, параллельные
прямые,
перпендикулярные
прямые.
Прямоугольная система
координат на
плоскости. Координаты
точки на плоскости,
абсцисса и ордината.
Построение точек и
фигур на координатной
плоскости.
Четырёхугольник,
примеры
четырёхугольников.
Прямоугольник,
квадрат: использование
свойств сторон, углов,
диагоналей.
Изображение
геометрических фигур
на нелинованной бумаге
с использованием
циркуля, линейки,
угольника,
транспортира.
Построения на клетчатой
бумаге.
Измерение и построение
углов с помощью
транспортира

Контролировать и оценивать
свою работу; ставить цели на
следующий этап обучения

Распознавать на чертежах,
рисунках случаи взаимного
расположения двух прямых.
Изображать с помощью
чертёжных инструментов на
нелинованной и клетчатой бумаге
две пересекающиеся
прямые, две параллельные
прямые, строить прямую,
перпендикулярную данной.
Приводить примеры
параллельности и перпендикулярности прямых в пространстве.
Распознавать в многоугольниках
перпендикулярные и параллельные стороны. Изображать
многоугольники с параллельными, перпендикулярными
сторонами.
Объяснять и иллюстрировать
понятие прямоугольной системы
координат на плоскости,
использовать терминологию;
строить на координатной
плоскости точки и фигуры по
заданным координатам, находить
координаты точек.
Изображать на нелинованной и
клетчатой бумаге с использованием чертёжных инструментов
четырёхугольники с заданными
свойствами: с параллельными,
перпендикулярными, равными
сторонами, прямыми углами и
др., равнобедренный треугольник.
Предлагать и обсуждать
способы, алгоритмы построения.
Исследовать, используя
эксперимент, наблюдение,
моделирование, свойства
прямоугольника, квадрата,
разбивать на треугольники.
Обосновывать, опровергать с
39

Контрольная
работа № 14

1

Повторение
Итоговое
повторение
курса
5—6 классов

12
11

Итоговая
1
контрольная
работа № 15
Итого: 170

Темы 42–45

Повторение основных
понятий и методов
курсов 5 и 6 классов,
обобщение и
систематизация знаний

Темы 1–46

помощью контрпримеров
утверждения о прямоугольнике,
квадрате, распознавать верные и
неверные утверждения.
Измерять и строить с помощью
транспортира углы, в том числе в
многоугольнике, сравнивать
углы; распознавать острые,
прямые, тупые, развёрнутые углы.
Знакомиться с историей
развития арифметики
Контролировать и оценивать
свою работу; ставить цели на
следующий этап обучения
Вычислять значения
выражений, содержащих
натуральные, целые, положительные и отрицательные
числа, обыкновенные и
десятичные дроби,
выполнять преобразования
чисел и выражений.
Выбирать способ сравнения
чисел, вычислений, применять
свойства арифметических
действий для рационализации
вычислений.
Решать задачи из реальной
жизни, применять
математические знания для
решения задач из других
предметов.
Решать задачи разными
способами, сравнивать,
выбирать способы решения
задачи.
Осуществлять самоконтроль
выполняемых действий и
самопроверку результата
вычислений
Контролировать и оценивать
свою работу; ставить цели на
следующий этап обучения

40


Наверх
На сайте используются файлы cookie. Продолжая использование сайта, вы соглашаетесь на обработку своих персональных данных (согласие). Подробности об обработке ваших данных — в политике конфиденциальности.

Функционал «Мастер заполнения» недоступен с мобильных устройств.
Пожалуйста, воспользуйтесь персональным компьютером для редактирования информации в «Мастере заполнения».